

VUV waste gas treatment system utilizes Microwave Cracking Technology to break down and oxidize pollutants via microwave catalytic synergy, direct cracking and indirect reactions. It converts organic waste gases into harmless byproducts like CO₂, H₂O, and N₂, making it suitable for industries like Pharma & BioPharma, Electronics, Chemical, Power, Cement, Steel etc.

Working Principle

500+
Installations
Globally

Features

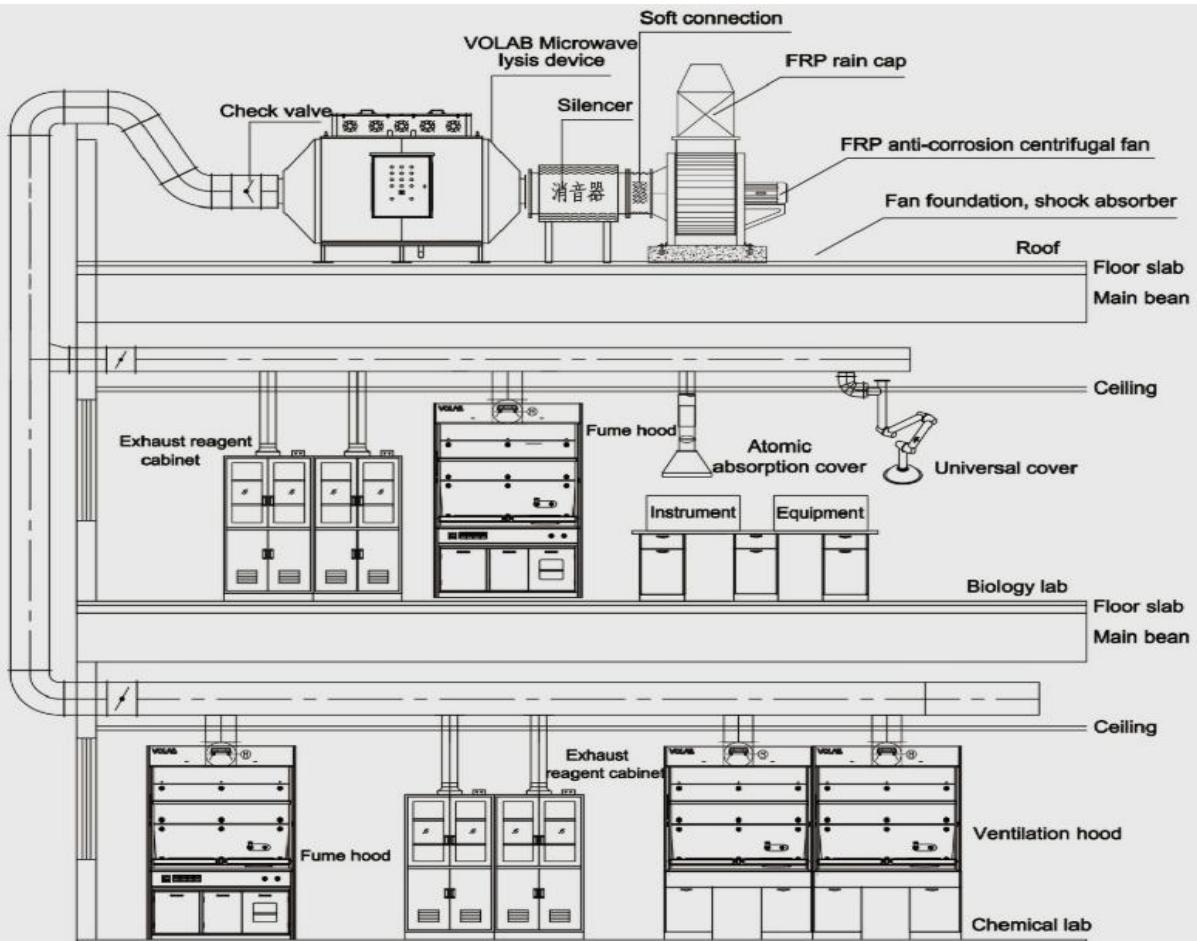
- 95% efficiency in pollutant removal
- Supports Carbon Neutrality initiatives
- Handles broad spectrum of gases
- Reliable, emission-standard compliant
- Eco-friendly: no secondary pollution
- Plug-and-play; low maintenance
- Integrates with PLC and DCS systems

<70°C

<85%

110-240 V

Configuration


Model ➤	VUV-3K	VUV-5K	VUV-10K
Dimensions (mm)	L 2,500 W 1,400 H 1,900	L 2,900 W 1,400 H 1,900	L 3,300 W 1,400 H 1,900
Air Volume	3,000 m ³ /h	5,000 m ³ /h	10,000 m ³ /h
Power	9 KW	13 KW	18 KW
Wind Resistance	200 pa		
Material	Cold-rolled Steel		

Density Pharmachem Private Limited

Sy. No. 615/A & 624/2/1, Pudur Village Medchal-Malkajgiri District
Hyderabad - 501 401, Telangana, India

+91 99897 77910 jagadish@densitypharmachem.com www.densitypharmachem.com

Typical Set-up: Laboratory

Common Gases & End Products

Gas	End Product(s)	Gas	End Product(s)
Ammonia	$\text{H}_2\text{O}, \text{N}_2,$	Methanol	$\text{H}_2\text{O}, \text{CO}_2$
Trimethylamine	$\text{H}_2\text{O}, \text{N}_2, \text{CO}_2$	Phenol	$\text{H}_2\text{O}, \text{CO}_2$
Aniline	$\text{H}_2\text{O}, \text{N}_2, \text{CO}_2$	Benzene	$\text{H}_2\text{O}, \text{CO}_2$
Hydrogen Sulfide	$\text{H}_2\text{O}, \text{SO}_4^{2-}$	Toluene	$\text{H}_2\text{O}, \text{CO}_2$
Methyl mercaptan	$\text{H}_2\text{O}, \text{CO}_2, \text{SO}_4^{2-}$	Styrene	$\text{H}_2\text{O}, \text{CO}_2$
Methyl sulfide	$\text{H}_2\text{O}, \text{CO}_2, \text{SO}_4^{2-}$	Xylene	$\text{H}_2\text{O}, \text{CO}_2$
Dimethyl disulfide	$\text{H}_2\text{O}, \text{CO}_2, \text{SO}_4^{2-}$	Ethylene oxide	$\text{H}_2\text{O}, \text{CO}_2$
Ethyl acetate	$\text{H}_2\text{O}, \text{CO}_2$		

Superior to
UV, Spray Tower or
Activated Carbon
Technology